有监督学习 supervised learning
对具有概念标记(分类)的训练样本进行学习,以尽可能对训练样本集外的数据进行标记(分类)预测。这里,所有的标记(分类)是已知的。因此,训练样本的岐义性低。监督学习的典型例子就是决策树、神经网络以及疾病监测.
监督学习是训练神经网络和决策树的最常见技术。这两种技术(神经网络和决策树)高度依赖于事先确定的分类系统给出的信息。对于神经网络来说,分类系统用于判断网络的错误,然后调整网络适应它;对于决策树,分类系统用来判断哪些属性提供了最多的信息,如此一来可以用它解决分类系统的问题。我们将会看到这两者(神经网络和决策树)更多的细节,但在目前,它们用预先确定分类方法的形式来“监督”就足够了。
无监督学习 unsupervised learning
对没有概念标记(分类)的训练样本进行学习,以发现训练样本集中的结构性知识。这里,所有的标记(分类)是未知的。因此,训练样本的岐义性高。聚类就是典型的无监督学习.
在这方面一个突出的例子是Backgammon(西洋双陆棋)游戏,有一系列计算机程序(例如neuro-gammon和TD-gammon)通过非监督学习自己一遍又一遍的玩这个游戏,变得比最强的人类棋手还要出色。这些程序发现的一些原则甚至令双陆棋专家都感到惊讶,并且它们比那些使用预分类样本训练的双陆棋程序工作得更出色。
一种次要的非监督学习类型称之为聚类(原文为clustering)。这类学习类型的目标不是让效用函数最大化,而是找到训练数据中的近似点。聚类常常能发现那些与假设匹配的相当好的直观分类。例如,基于人口统计的聚合个体可能会在一个群体中形成一个富有的聚类,以及其他的贫穷的聚合。
举例
本例来自,Udacity 的 Intro to Machine Learning 课程
- 从一个加了标签的相册中找出某个人。
- 分析银行诈骗交易。
其中并没有给出异常交易的明确定义,没有例子来说明,所以属于无监督学习。 - 通过某人的音乐选择及标签特征,推荐音乐。
- 通过学习风格将优达学城的学生分类。
学生类型不是已知的,不属于监督学习。